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Abstract. The density-functional theory of freezing is extended to the case of binary mixtures 
of hard discs viewed as a simple model for monolayers adsorbed on a smooth substrate. The 
theory is applied to the fluid-disordered crystal transition. The results are similar to those 
already obtained for the three-dimensional case: when the ratio of diameters is lowered, the 
phase diagram changes rapidly from a spindle, over alower azeotrope to an eutecticdiagram. 
Evidence is also found for the existence of a two-dimensional analogue of the empirical 
Hume-Rothery rule. 

1. Introduction 

The density-functional (DF) theory of inhomogeneous fluids (see Evans 1979) has paved 
the way for the formulation of a first-principles theory of freezing which, although still 
in elaboration (see Lutsko and Baus 1989, Baus 1989), has already been successfully 
applied, during the last ten years, to the freezing of various simple potential systems 
(for a review, see Haymet 1987, Baus 1987, 1990). Very few authors, however, have 
considered the important case of the freezing of mixtures. While Barrat et a1 (1987), 
Smithline and Haymet (1987) and Rick and Haymet (1989) have already investigated 
the freezing of bulk mixtures, we will consider here the case of mixtures adsorbed on a 
smooth substrate. In this first attempt to extend the DF theory of freezing to mixtures 
with a reduced dimensionality, we will consider only a fairly rough model for such 
mixtures, namely, a binary mixture of hard discs (HD) of different diameters moving on 
a structureless surface. The equation of state and the pair structure of the fluid phase of 
this model have already been studied in a previous publication (Barrat et a1 1988). Here, 
we will study the fluid-solid transition of the HD mixture. We will restrict considerations 
hereby to the freezing into one particular solid, namely, a substitutionally disordered 
crystal with a triangular lattice structure. In other words, the solid alloys to be considered 
here have no compositional long-range order although they may have a short-range 
compositional order similar to that of the fluid phase. Besides this, the underlying crystal 
structure will be assumed to have a perfect positional long-range order with each site of 
the triangular lattice occupied either by a small or a large HD. This transition is thus the 
exact analogue of the three-dimensional case considered previously by Barrat et a1 
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Figure 1. The Gaussian width parameters a, of (2.3) versus the total packing fraction q for 
x1 = 0.8 and y = 0.88. The curves are guides to the eye: a la :  (open squares), a2a: (dots). 
Also shown for comparison is the pure case x ,  = 1, y = 1 (filled squares). 

(1987). In the equal-diameter limit, it also reduces to the single-component HD system 
studied by Colot and Baus (1986). One further point worth noting is that the positional 
long-range order that is assumed here implies that the results are suitable for comparison 
with computer simulations of large but finite HD systems, but not necessarily with real 
systems where, in two dimensions, the thermally excited defects are strong enough to 
destroy this positional long-range order (Landau and Lifshitz 1984). Finally, the DF 
theory that will be used here to study the freezing of this model system is the same as 
that used in the three-dimensional case by Barrat et aZ(1987). We hence refer the reader 
to the latter publication for more details. One item not readily available in the two- 
dimensional case, however, concerns the direct-correlation functions, used as ingredi- 
ents in the present DF theory of freezing, for which we have used the results of Baus and 
Colot (1987) as extended to binary mixtures by Barrat et aZ(1988). 

2. Theoretical method 

We consider a binary mixture of HD of diameters ol, 02, with y = u1/02 S 1, enclosed 
in a volume V at constant temperature T ( P  = l/k,T). The local density of each 
component, pu(r)  with v = 1,2 ,  is a periodic function of r in the solid phase (s) and an 
r-independent (uniform) function in the fluid phase (f). The difference in Helmholtz 
free energy per unit volume between the two phases, Af = fs -ff, can be written, at 
constant average density, as 
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Figure2. Thedifference is freeenergy per particle, /3 Af/p, asobtainedfrom the minimisation 
of (2.1), versus forx, = 0.8, y = 0.88 (open squares) andx, = 1, y = 1 (dots). 

where the CPU( I r ( ;  x ,  p) are the direct-correlation functions of the fluid phase of HD of 
total density p = p1 + p2 and concentration x = pl/p,  as given by (14) of Barrat et a1 
(1988). In (2.1), we have put Ap,(r) = p,(r) - p,, withp, the spatially averaged density: 

where p,(r)  will be further approximated in terms of Gaussian profiles as 

where ( R )  is the set of Bravais lattice vectors of the triangular lattice, andx, = p,/p the 
concentration of the vth component. Equation (2.3) implies that, on average, HD of 
species v have a probability x ,  to occupy any given lattice site R .  The inverse widths of 
the Gaussians in (2.3), ay, play the role of the order parameters of the fluid-solid 
transition. For a, > 0, the particles of species Y are localised around the lattice sites, 
whereas for a, = 0, they are uniformly distributed in space. The values of a, will be 
determined by minimising (2. l ) ,  with respect to cy1 and a2. The basic approximation 
underlying (2.1), besides the Gaussian approximation of (2.3), concerns the use of an 
effective fluid of density P to describe the solid. This density will be determined by 
requiring that the smallest reciprocal lattice vector of the triangular lattice coincides 
with the position of the main peak of the total static structure factor: 

S(k x ,  0) = c X P X , S P ,  (k x ,  P )  
!J, 

of the effective fluid of total density 0 and concentration x (see Barrat et a1 1987). This 
density depends on the total average density of the solid, p = p1 + p2, and on its 
concentration x .  Once 0 = O ( p , x )  is known, equation (2.1) can be minimised with 
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Figure 3. The phase diagram in the temperature- 
concentration ( T*-x2) plane for various y-values. 
Here T* = (ppa:)-', withp the pressure, and x2 
is the concentration of the larger discs. Notice the 
rapid changes with y :  ( a )  y = 0.95, ( b )  y = 0.90, 
(c) y = 0.89, (d )  y = 0.88, ( e )  y = 0.85. 

spect to a,, (v = 1, 2) and the stable olids can be located. In the limit of large 
a,-values, the first term in the RHS of (2.1) can also be simplified, using (2.3), to give 

j $p, , ( r )  l n ( y )  = 
u = 1 , 2  v = 1 , 2  

py(ln(a,,u$) - 111(4q,y-~ + 47,)- 1) 

where q,, = (n/4)uz p y  are the HD packing fractions and y = ul/u2 S 1. This approxi- 
mation, (2.4), can only be used provided avo$ 3 30. For smaller values of a,,, the LHS 
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of (2.4) has to be evaluated numerically (Xu 1989). Once the free energy (2.1) has 
been minimised, the fluid-solid coexistence can be determined via a double-tangent 
construction on the free enthalpies of the solid and the fluid as explained by Barrat et a1 
(1987). The equation of state used for the fluid is given by (7) of Barrat et a1 (1988). 

3. Results 

First, we have determined the density range where stable solid alloys can be found. To 
this end, Af of (2.1) has been minimised with respect to al and a2 for given q = q l  + q 2 ,  
x = x1 and y = a,/a2. The resulting al and a2 depend strongly on q and weakly onx  and 
y. An example is shown in figure 1. It is seen there that both a1 and a2 increase with q ,  
but that the larger discs (a2)  are more strongly localised than the smaller ones (a1). The 
value of Af for mixtures with y < 0.90 and x2 < 0.5 is always larger than for the pure 
case ( y  = l ) ,  as illustrated in figure 2. For such mixtures, the threshold value of q above 
which the solid alloys appear for the first time increases very rapidly when y is lowered, 
and when y reaches the value 0.85, no stable alloys can be found any more. This is very 
similar to the three-dimensional findings of Barrat et a1 (1987) and points to the existence 
of a two-dimensional analogue of the empirical Hume-Rothery rule (see Hume-Rothery 
et a1 1969). This rule states that (in three dimensions) the formation of disordered 
metallic alloys is very improbable when the atomic sizes differ by more than fifteen per 
cent. The analogy with the three-dimensional case extends also to the phase diagrams 
since, as shown in figure 3, when lowering y ,  the same sequence of rapidly changing 
phase diagrams is found here as well. Spindle-type phase diagrams are found for 
1 > y 3 0.90 and these are transformed into a lower azeotrope-type diagram for y 2: 

0.89 and finally into a eutectic phase diagram for 0.88 3 y 3 0.85 (see figure 3). 

4. Conclusions 

We have extended the density-functional theory of freezing to the case of a binary 
mixture of hard discs. The overall behaviour is very similar to that found from the same 
theory for the hard-sphere mixture. In particular, we find strong evidence for the 
existence of a two-dimensional analogue of the empirical Hume-Rothery rule. 
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